Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 219
1.
J Physiol ; 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642051

Macrophages (MΦ) play pivotal roles in tissue homeostasis and repair. Their mechanical environment has been identified as a key modulator of various cell functions, and MΦ mechanosensitivity is likely to be critical - in particular in a rhythmically contracting organ such as the heart. Cultured MΦ, differentiated in vitro from bone marrow (MΦBM), form a popular research model. This study explores the activity of mechanosensitive ion channels (MSC) in murine MΦBM and compares it to MSC activity in MΦ enzymatically isolated from cardiac tissue (tissue-resident MΦ; MΦTR). We show that MΦBM and MΦTR have stretch-induced currents, indicating the presence of functional MSC in their plasma membrane. The current profiles in MΦBM and in MΦTR show characteristics of cation non-selective MSC such as Piezo1 or transient receptor potential channels. While Piezo1 ion channel activity is detectable in the plasma membrane of MΦBM using the patch-clamp technique, or by measuring cytosolic calcium concentration upon perfusion with the Piezo1 channel agonist Yoda1, no Piezo1 channel activity was observed in MΦTR. The selective transient receptor potential vanilloid 4 (TRPV4) channel agonist GSK1016790A induces calcium entry in MΦTR and in MΦBM. In MΦ isolated from left-ventricular scar tissue 28 days after cryoablation, stretch-induced current characteristics are not significantly different compared to non-injured control tissue, even though scarred ventricular tissue is expected to be mechanically remodelled and to contain an altered composition of pre-existing cardiac and circulation-recruited MΦ. Our data suggest that the in vitro differentiation protocols used to obtain MΦBM generate cells that differ from MΦ recruited from the circulation during tissue repair in vivo. Further investigations are needed to explore MSC identity in lineage-traced MΦ in scar tissue, and to compare mechanosensitivity of circulating monocytes with that of MΦBM. KEY POINTS: Bone marrow-derived (MΦBM) and tissue resident (MΦTR) macrophages have stretch-induced currents, indicating expression of functional mechanosensitive channels (MSC) in their plasma membrane. Stretch-activated current profiles show characteristics of cation non-selective MSC; and mRNA coding for MSC, including Piezo1 and TRPV4, is expressed in murine MΦBM and in MΦTR. Calcium entry upon pharmacological activation of TRPV4 confirms functionality of the channel in MΦTR and in MΦBM. Piezo1 ion channel activity is detected in the plasma membrane of MΦBM but not in MΦTR, suggesting that MΦBM may not be a good model to study the mechanotransduction of MΦTR. Stretch-induced currents, Piezo1 mRNA expression and response to pharmacological activation are not significantly changed in cardiac MΦ 28 days after cryoinjury compared to sham operated mice.

2.
Europace ; 26(4)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38591838

AIMS: Recent trial data demonstrate beneficial effects of active rhythm management in patients with atrial fibrillation (AF) and support the concept that a low arrhythmia burden is associated with a low risk of AF-related complications. The aim of this document is to summarize the key outcomes of the 9th AFNET/EHRA Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA). METHODS AND RESULTS: Eighty-three international experts met in Münster for 2 days in September 2023. Key findings are as follows: (i) Active rhythm management should be part of the default initial treatment for all suitable patients with AF. (ii) Patients with device-detected AF have a low burden of AF and a low risk of stroke. Anticoagulation prevents some strokes and also increases major but non-lethal bleeding. (iii) More research is needed to improve stroke risk prediction in patients with AF, especially in those with a low AF burden. Biomolecules, genetics, and imaging can support this. (iv) The presence of AF should trigger systematic workup and comprehensive treatment of concomitant cardiovascular conditions. (v) Machine learning algorithms have been used to improve detection or likely development of AF. Cooperation between clinicians and data scientists is needed to leverage the potential of data science applications for patients with AF. CONCLUSIONS: Patients with AF and a low arrhythmia burden have a lower risk of stroke and other cardiovascular events than those with a high arrhythmia burden. Combining active rhythm control, anticoagulation, rate control, and therapy of concomitant cardiovascular conditions can improve the lives of patients with AF.


Atrial Fibrillation , Stroke , Humans , Atrial Fibrillation/complications , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Stroke/etiology , Stroke/prevention & control , Risk , Hemorrhage , Anticoagulants/therapeutic use
5.
Clin Res Cardiol ; 113(5): 716-727, 2024 May.
Article En | MEDLINE | ID: mdl-37725108

BACKGROUND: Arrhythmias may originate from surgically unaffected right ventricular (RV) regions in patients with tetralogy of Fallot (TOF). We aimed to investigate action potential (AP) remodelling and arrhythmia susceptibility in RV myocardium of patients with repaired and with unrepaired TOF, identify possible correlations with clinical phenotype and myocardial fibrosis, and compare findings with data from patients with atrial septal defect (ASD), a less severe congenital heart disease. METHODS: Intracellular AP were recorded ex vivo in RV outflow tract samples from 22 TOF and three ASD patients. Arrhythmias were provoked by superfusion with solutions containing reduced potassium and barium chloride, or isoprenaline. Myocardial fibrosis was quantified histologically and associations between clinical phenotype, AP shape, tissue arrhythmia propensity, and fibrosis were examined. RESULTS: Electrophysiological abnormalities (arrhythmias, AP duration [APD] alternans, impaired APD shortening at increased stimulation frequencies) were generally present in TOF tissue, even from infants, but rare or absent in ASD samples. More severely diseased and acyanotic patients, pronounced tissue susceptibility to arrhythmogenesis, and greater fibrosis extent were associated with longer APD. In contrast, APD was shorter in tissue from patients with pre-operative cyanosis. Increased fibrosis and repaired-TOF status were linked to tissue arrhythmia inducibility. CONCLUSIONS: Functional and structural tissue remodelling may explain arrhythmic activity in TOF patients, even at a very young age. Surprisingly, clinical acyanosis appears to be associated with more severe arrhythmogenic remodelling. Further research into the clinical drivers of structural and electrical myocardial alterations, and the relation between them, is needed to identify predictive factors for patients at risk.


Heart Septal Defects, Atrial , Tetralogy of Fallot , Humans , Tetralogy of Fallot/complications , Tetralogy of Fallot/surgery , Action Potentials , Arrhythmias, Cardiac , Fibrosis , Heart Septal Defects, Atrial/complications , Patient Acuity
6.
J Mol Cell Cardiol ; 187: 1-14, 2024 02.
Article En | MEDLINE | ID: mdl-38103633

BACKGROUND: Although aging is known to be associated with an increased incidence of both atrial and ventricular arrhythmias, there is limited knowledge about how Schwann cells (SC) and the intracardiac nervous system (iCNS) remodel with age. Here we investigate the differences in cardiac SC, parasympathetic nerve fibers, and muscarinic acetylcholine receptor M2 (M2R) expression in young and old mice. Additionally, we examine age-related changes in cardiac responses to sympathomimetic and parasympathomimetic drugs. METHODS AND RESULTS: Lower SC density, lower SC proliferation and fewer parasympathetic nerve fibers were observed in cardiac and, as a control sciatic nerves from old (20-24 months) compared to young mice (2-3 months). In old mice, chondroitin sulfate proteoglycan 4 (CSPG4) was increased in sciatic but not cardiac nerves. Expression of M2R was lower in ventricular myocardium and ventricular conduction system from old mice compared to young mice, while no significant difference was seen in M2R expression in sino-atrial or atrio-ventricular node pacemaker tissue. Heart rate was slower and PQ intervals were longer in Langendorff-perfused hearts from old mice. Ventricular tachycardia and fibrillation were more frequently observed in response to carbachol administration in hearts from old mice versus those from young mice. CONCLUSIONS: On the background of reduced presence of SC and parasympathetic nerve fibers, and of lower M2R expression in ventricular cardiomyocytes and conduction system of aged hearts, the propensity of ventricular arrhythmogenesis upon parasympathomimetic drug application is increased. Whether this is caused by an increase in heterogeneity of iCNS structure and function remains to be elucidated.


Heart Conduction System , Myocardium , Mice , Animals , Myocardium/metabolism , Arrhythmias, Cardiac/metabolism , Heart Atria , Parasympathetic Nervous System
7.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article En | MEDLINE | ID: mdl-37446137

The cardiac cell mechanical environment changes on a beat-by-beat basis as well as in the course of various cardiac diseases. Cells sense and respond to mechanical cues via specialized mechano-sensors initiating adaptive signaling cascades. With the aim of revealing new candidates underlying mechano-transduction relevant to cardiac diseases, we investigated mechano-sensitive ion channels (MSC) in human hearts for their chamber- and disease-preferential mRNA expression. Based on a meta-analysis of RNA sequencing studies, we compared the mRNA expression levels of MSC in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and from patients in sinus rhythm (underlying diseases: heart failure, coronary artery disease, heart valve disease) or with atrial fibrillation. Our results suggest that a number of MSC genes are expressed chamber preferentially, e.g., CHRNE in the atria (compared to the ventricles), TRPV4 in the right atrium (compared to the left atrium), CACNA1B and KCNMB1 in the left atrium (compared to the right atrium), as well as KCNK2 and KCNJ2 in ventricles (compared to the atria). Furthermore, 15 MSC genes are differentially expressed in cardiac disease, out of which SCN9A (lower expressed in heart failure compared to donor tissue) and KCNQ5 (lower expressed in atrial fibrillation compared to sinus rhythm) show a more than twofold difference, indicative of possible functional relevance. Thus, we provide an overview of cardiac MSC mRNA expression in the four cardiac chambers from patients with different cardiac diseases. We suggest that the observed differences in MSC mRNA expression may identify candidates involved in altered mechano-transduction in the respective diseases.


Atrial Fibrillation , Heart Diseases , Heart Failure , Heart Transplantation , Humans , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Tissue Donors , Heart Atria/metabolism , Heart Ventricles , Heart Failure/genetics , Heart Failure/metabolism , Heart Diseases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , NAV1.7 Voltage-Gated Sodium Channel/metabolism
8.
Cells ; 12(2)2023 01 05.
Article En | MEDLINE | ID: mdl-36672164

The human heart responds to various diseases with structural, mechanical, and electrical remodelling processes [...].


Atrial Remodeling , Heart Diseases , Heart Failure , Humans , Ventricular Remodeling , Heart
9.
J Mol Cell Cardiol ; 176: 1-10, 2023 03.
Article En | MEDLINE | ID: mdl-36681268

AIMS: The incidence of atrial fibrillation (AF) increases with age. Women have a lower risk. Little is known on the impact of age, sex and clinical variables on action potentials (AP) recorded in right atrial tissue obtained during open heart surgery from patients in sinus rhythm (SR) and in longstanding AF. We here investigated whether age or sex have an impact on the shape of AP recorded in vitro from right atrial tissue. METHODS: We performed multivariable analysis of individual AP data from trabeculae obtained during heart surgery of patients in SR (n = 320) or in longstanding AF (n = 201). AP were recorded by sharp microelectrodes at 37 °C at 1 Hz. Impact of clinical variables were modeled using a multivariable mixed model regression. RESULTS: In SR, AP duration at 90% repolarization (APD90) increased with age. Lower ejection fraction and higher body mass index were associated with smaller action potential amplitude (APA) and maximum upstroke velocity (Vmax). The use of beta-blockers was associated with larger APD90. In tissues from women, resting membrane potential was less negative and APA as well as Vmax were smaller. Besides shorter APD20 in elderly patients, effects of age and sex on atrial AP were lost in AF. CONCLUSION: The higher probability to develop AF at advanced age cannot be explained by a shortening in APD90. Less negative RMP and lower upstroke velocity might contribute to lower incidence of AF in women, which may be of clinical relevance.


Atrial Appendage , Atrial Fibrillation , Humans , Female , Aged , Action Potentials , Membrane Potentials , Heart Atria
10.
Pharmaceutics ; 14(7)2022 Jun 27.
Article En | MEDLINE | ID: mdl-35890252

Atrial fibrillation (AF) is the most common cardiac arrhythmia. Its treatment includes antiarrhythmic drugs (AADs) to modulate the function of cardiac ion channels. However, AADs have been limited by proarrhythmic effects, non-cardiovascular toxicities as well as often modest antiarrhythmic efficacy. Theoretical models showed that a combined blockade of Nav1.5 (and its current, INa) and Kv1.5 (and its current, IKur) ion channels yield a synergistic anti-arrhythmic effect without alterations in ventricles. We focused on Kv1.5 and Nav1.5 to search for structural similarities in their binding site (BS) for flecainide (a common blocker and widely prescribed AAD) as a first step for prospective rational multi-target directed ligand (MTDL) design strategies. We present a computational workflow for a flecainide BS comparison in a flecainide-Kv1.5 docking model and a solved structure of the flecainide-Nav1.5 complex. The workflow includes docking, molecular dynamics, BS characterization and pattern matching. We identified a common structural pattern in flecainide BS for these channels. The latter belongs to the central cavity and consists of a hydrophobic patch and a polar region, involving residues from the S6 helix and P-loop. Since the rational MTDL design for AF is still incipient, our findings could advance multi-target atrial-selective strategies for AF treatment.

13.
Cells ; 11(2)2022 01 11.
Article En | MEDLINE | ID: mdl-35053351

Freshly isolated primary cardiomyocytes (CM) are indispensable for cardiac research. Experimental CM research is generally incompatible with life of the donor animal, while human heart samples are usually small and scarce. CM isolation from animal hearts, traditionally performed by coronary artery perfusion of enzymes, liberates millions of cells from the heart. However, due to progressive cell remodeling following isolation, freshly isolated primary CM need to be used within 4-8 h post-isolation for most functional assays, meaning that the majority of cells is essentially wasted. In addition, coronary perfusion-based isolation cannot easily be applied to human tissue biopsies, and it does not straightforwardly allow for assessment of regional differences in CM function within the same heart. Here, we provide a method of multi-day CM isolation from one animal heart, yielding calcium-tolerant ventricular and atrial CM. This is based on cell isolation from cardiac tissue slices following repeated (usually overnight) storage of the tissue under conditions that prolong CM viability beyond the day of organ excision by two additional days. The maintenance of cells in their near-native microenvironment slows the otherwise rapid structural and functional decline seen in isolated CM during attempts for prolonged storage or culture. Multi-day slice-based CM isolation increases the amount of useful information gained per animal heart, improving reproducibility and reducing the number of experimental animals required in basic cardiac research. It also opens the doors to novel experimental designs, including exploring same-heart regional differences.


Biomedical Research , Heart Atria/cytology , Heart Ventricles/cytology , Myocytes, Cardiac/cytology , Animals , Calcium/pharmacology , Cell Separation , Cell Shape/drug effects , Cells, Cultured , Gene Expression Regulation/drug effects , Membrane Potentials/drug effects , Rabbits , Vasoconstriction/drug effects , Vasodilation/drug effects
15.
Cardiovasc Res ; 118(3): 798-813, 2022 02 21.
Article En | MEDLINE | ID: mdl-33823533

AIMS: Macrophages (MΦ), known for immunological roles, such as phagocytosis and antigen presentation, have been found to electrotonically couple to cardiomyocytes (CM) of the atrioventricular node via Cx43, affecting cardiac conduction in isolated mouse hearts. Here, we characterize passive and active electrophysiological properties of murine cardiac resident MΦ, and model their potential electrophysiological relevance for CM. METHODS AND RESULTS: We combined classic electrophysiological approaches with 3D florescence imaging, RNA-sequencing, pharmacological interventions, and computer simulations. We used Cx3cr1eYFP/+ mice wherein cardiac MΦ are fluorescently labelled. FACS-purified fluorescent MΦ from mouse hearts were studied by whole-cell patch-clamp. MΦ electrophysiological properties include: membrane resistance 2.2±0.1 GΩ (all data mean±SEM), capacitance 18.3±0.1 pF, resting membrane potential -39.6±0.3 mV, and several voltage-activated, outward or inwardly rectifying potassium currents. Using ion channel blockers (barium, TEA, 4-AP, margatoxin, XEN-D0103, and DIDS), flow cytometry, immuno-staining, and RNA-sequencing, we identified Kv1.3, Kv1.5, and Kir2.1 as channels contributing to observed ion currents. MΦ displayed four patterns for outward and two for inward-rectifier potassium currents. Additionally, MΦ showed surface expression of Cx43, a prerequisite for homo- and/or heterotypic electrotonic coupling. Experimental results fed into development of an original computational model to describe cardiac MΦ electrophysiology. Computer simulations to quantitatively assess plausible effects of MΦ on electrotonically coupled CM showed that MΦ can depolarize resting CM, shorten early and prolong late action potential duration, with effects depending on coupling strength and individual MΦ electrophysiological properties, in particular resting membrane potential and presence/absence of Kir2.1. CONCLUSION: Our results provide a first electrophysiological characterization of cardiac resident MΦ, and a computational model to quantitatively explore their relevance in the heterocellular heart. Future work will be focussed at distinguishing electrophysiological effects of MΦ-CM coupling on both cell types during steady-state and in patho-physiological remodelling, when immune cells change their phenotype, proliferate, and/or invade from external sources.


Potassium Channels, Voltage-Gated , Animals , Macrophages/metabolism , Membrane Potentials/physiology , Mice , Myocytes, Cardiac/metabolism , Potassium Channels/genetics
17.
Circ Res ; 129(8): 804-820, 2021 10.
Article En | MEDLINE | ID: mdl-34433292
18.
Herzschrittmacherther Elektrophysiol ; 32(3): 346-352, 2021 Sep.
Article En | MEDLINE | ID: mdl-34241681

AIMS: Atrial fibrillation (AF) screening in risk populations has the potential to prevent strokes. The authors tested the feasibility of a digital program with initial photoplethysmographic (PPG) self-screening and cardiologist-attended electrocardiographic (ECG) confirmation of screen-positive cases. METHODS: Inhabitants of the city of Ulm aged ≥ 65 years were invited to participate. After digital consent, participants were given access to a smartphone application for 14 days of self-screening (two recordings per day recommended). Screen-positive participants without known AF were invited to present to a cardiologist for AF confirmation with a 14-day ECG event recorder. PPG recordings were first analyzed by algorithm using a combination of linear and non-linear methods. The quality of pathological (classified by algorithm) PPG and all ECG recordings were checked by a telecare service. Primary outcomes included adherence to the screening protocol defined as the proportion of participants performing at least 14 PPG recordings (or until documentation of absolute arrhythmia) and the proportion of pathological PPG and all ECG recordings rejected by the telecare center. RESULTS: A total of 215 participants registered. Of these, 204 (95%) performed at least one recording and 169 (79%) reached the performance target of two sufficient measurements per day; 75 PPG recordings were automatically classified as pathological by algorithm; 14 (19%) were rejected by the telecare service due to poor quality. Of the 12 participants with a suspected first diagnosis of AF, five visited a cardiologist as part of the study. Of 1090 ECG recordings obtained, 390 (36%) were qualified as non-diagnostic. AF was confirmed in three cases. CONCLUSIONS: A digital AF screening program with initial self-screening and referral of screen-positive cases to a cardiologist-attended ECG-confirmation service is feasible with meaningful results in an elderly risk population. However, the availability of the target population of persons > 65 years of age for such a digital screening program appears to be limited despite extensive public relations activities.


Atrial Fibrillation , Aged , Atrial Fibrillation/diagnosis , Electrocardiography , Feasibility Studies , Humans , Mass Screening , Photoplethysmography
19.
Front Physiol ; 12: 673891, 2021.
Article En | MEDLINE | ID: mdl-34149453

Cardiac fibroblasts express multiple voltage-dependent ion channels. Even though fibroblasts do not generate action potentials, they may influence cardiac electrophysiology by electrical coupling via gap junctions with cardiomyocytes, and through fibrosis. Here, we investigate the electrophysiological phenotype of cultured fibroblasts from right atrial appendage tissue of patients with sinus rhythm (SR) or atrial fibrillation (AF). Using the patch-clamp technique in whole-cell mode, we observed steady-state outward currents exhibiting either no rectification or inward and/or outward rectification. The distributions of current patterns between fibroblasts from SR and AF patients were not significantly different. In response to depolarizing voltage pulses, we measured transient outward currents with fast and slow activation kinetics, an outward background current, and an inward current with a potential-dependence resembling that of L-type Ca2+ channels. In cell-attached patch-clamp mode, large amplitude, paxilline-sensitive single channel openings were found in ≈65% of SR and ∼38% of AF fibroblasts, suggesting the presence of "big conductance Ca2+-activated K+ (BK Ca )" channels. The open probability of BK Ca was significantly lower in AF than in SR fibroblasts. When cultured in the presence of paxilline, the shape of fibroblasts became wider and less spindle-like. Our data confirm previous findings on cardiac fibroblast electrophysiology and extend them by illustrating differential channel expression in human atrial fibroblasts from SR and AF tissue.

20.
Europace ; 23(12): 1903-1912, 2021 12 07.
Article En | MEDLINE | ID: mdl-34136917

AIMS: Atrial fibrillation (AF) is associated with a high risk of cardiovascular and non-cardiovascular death, even on anticoagulation. It is controversial, which conditions-including concomitant diseases and AF itself-contribute to this mortality. To further clarify these questions, major determinants of long-term mortality and their contribution to death were quantified in an unselected cohort of AF patients. METHODS AND RESULTS: We established a large nationwide registry comprising 8833 AF-patients with a median follow-up of 6.5 years (45 345 patient-years) and central adjudication of adverse events. Baseline characteristics of the patients were evaluated as predictors of mortality using Cox regression and C-indices for determination of predictive power. Annualized mortality was highest in the first year (6.2%) and remained high thereafter (5.2% in men and 5.5% in women). Thirty-eight percent of all deaths were cardiovascular, mainly due to heart failure or sudden death. Sex-specific age was the strongest predictor of mortality, followed by concomitant cardiovascular and non-cardiovascular conditions. These factors accounted for 25% of the total mortality beyond age and sex and for 84% of the mortality differences between AF types. Thus, the electrical phenotype of the disease at baseline contributed only marginally to prediction of mortality. CONCLUSION: Mortality is high in AF patients and arises primarily from heart failure, peripheral artery disease, chronic obstructive lung disease, chronic kidney disease, and diabetes mellitus, which, therefore, should be targeted to lower mortality. Parameters related to the electrical manifestation of AF did not have an independent impact on long-term mortality in our representative cohort.


Atrial Fibrillation , Atrial Fibrillation/complications , Female , Humans , Male , Prognosis , Prospective Studies , Registries , Risk Factors
...